BUILDINGENERGY BOSTON

Decarb Do No Harm: Applying the Hippocratic Oath to Existing Buildings

Sara Kudra, Architecture Towards Neutral Ilene Mason, Rethinking Power Management Rand Lemley, DREAM Collaborative

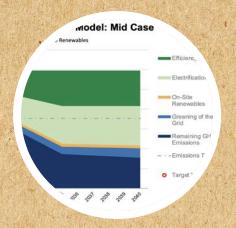
Curated by Jean Carroon

Northeast Sustainable Energy Association (NESEA) | March 21, 2025

We Are:

Sara Kudra
Founder/ Principal
Architecture Towards
Neutral

Ilene Mason
Founder and CEO
Rethinking Power
Management



Rand Lemley
Sustainability Lead
DREAM Collaborative

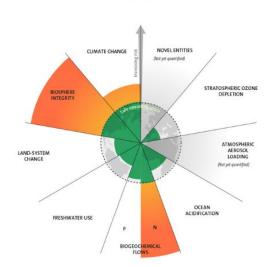
We Do:

High Performance
New Construction

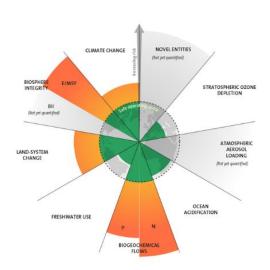
Immediate and Long Term Planning

Existing Building Decarbonization

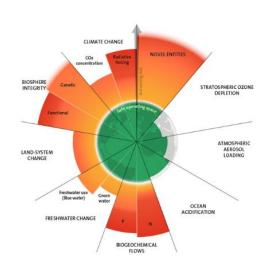
From friend ... to foe


When the ocean hits CO2 saturation (predicted year 2025...) we will suddenly be forced to see our true colors

MAGE: STOCKHOLM RESILIENCE CENTRE

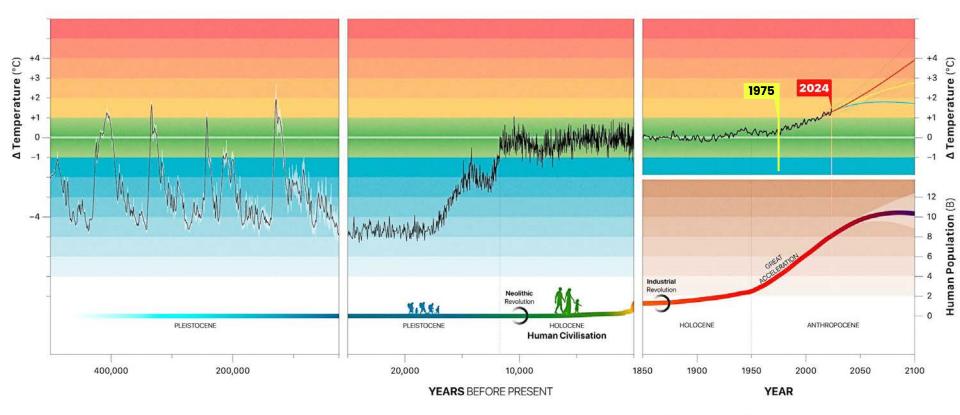

Planetary Boundaries

2009



7 boundaries assessed, 3 crossed

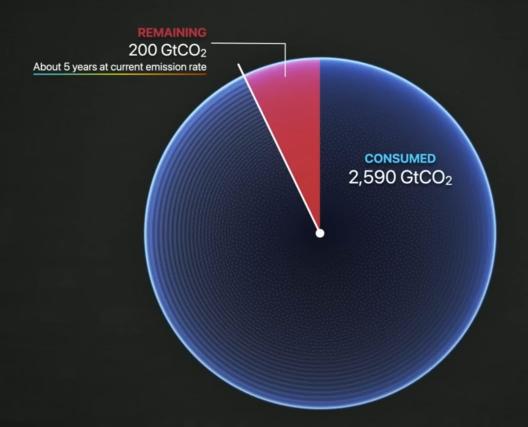
2015

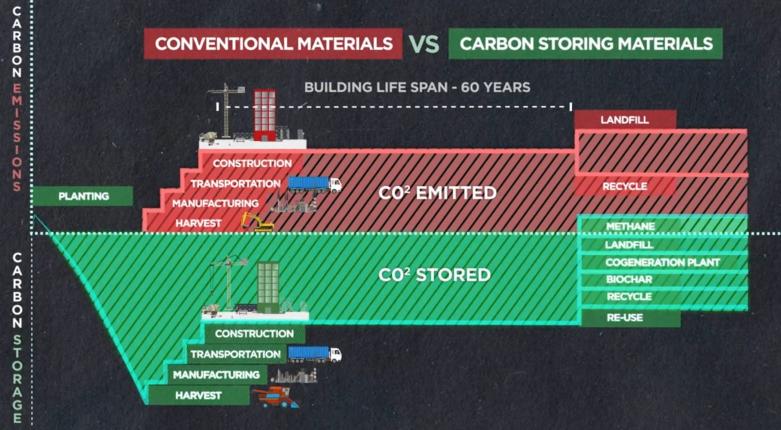

7 boundaries assessed, 4 crossed 2023

9 boundaries assessed, 6 crossed

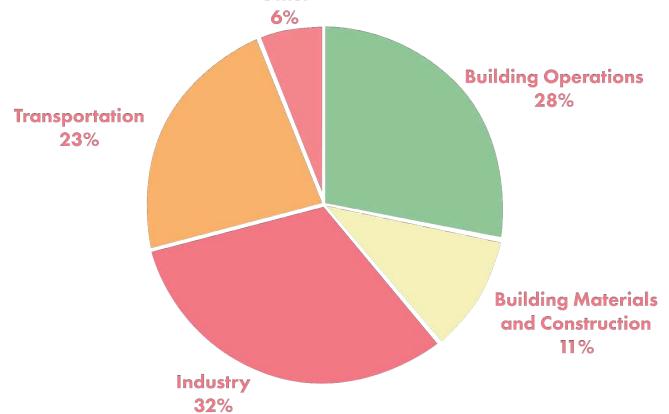
Humanity's Journey on Earth

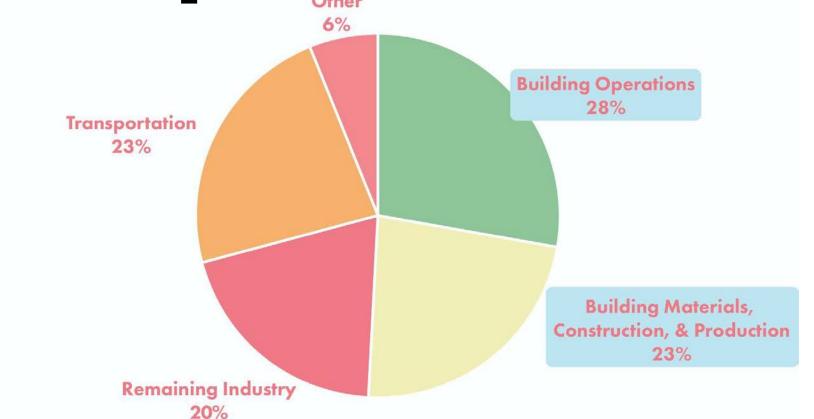
Human Population Size and Global Temperature from 500,000 Years BP Until 2100



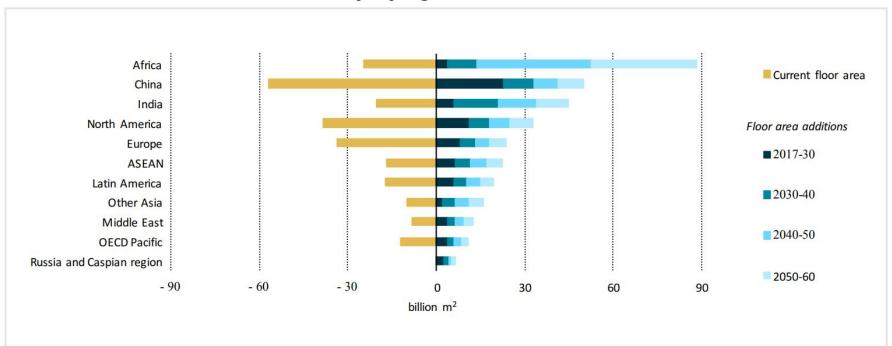


REMAINING CARBON BUDGET


1.5°C (50% likelihood)

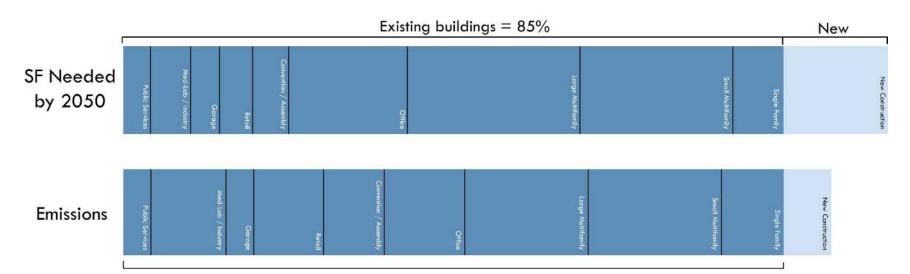

THE CARBON DIFFERENCE

Global CO₂ Emissions



Global CO₂ Emissions + Production

We continue to multiply


FIGURE 3 Floor area additions to 2060 by key regions

Notes: OECD Pacific includes Australia, New Zealand, Japan and Korea; ASEAN = Association of Southeast Asian Nations. Source: IEA (2017), Energy Technology Perspectives 2017, IEA/OECD, Paris, www.iea.org/etp

MAGE: LEMLEY. DATA: CARBON FREE BOSTON 2019

Aging buildings use too much!

Existing buildings = **92**% of building emissions in 2050 LET'S GET TO ZERO!

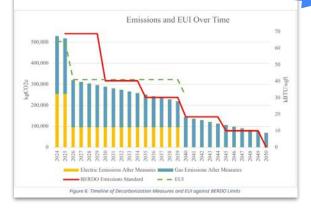
Low-hanging fruit, is there any?

Decarbonization Planning

Scoping studies

Design studies

Scoping Studies



Building Level

- Explain the major systems
- Highlight opportunities
- Rough order of magnitude

Design Studies

Pathway	Measures *Indicates Inclusion in Rehab Budget	Emissions Savings (kgCO2e)	Energy Savings (MMBtu)	Est. Solar Production	Total Bundle Cos (S)
Near- Term	EBA EShauss Retro- commissioning In-unit Energy Star patio door replacements* In-unit Energy Star patio door replacements In-unit Energy Star patio door replacements Compartmentalization Embus thermostats Compartmentalization Embus thermostats Multipurpose room RU replacement Rooftop solar PV Electrical and structural feasibility studies for electrification and solar Exterior insulation feasibility study	187,780 (35% of 2022 emissions)	3,044 (36% of 2022 use)	81,000 kWh (8% of 2022 cleetric use)	\$3,640,000
Long- Term	Exterior insulation system Cumulative whole building Heat pump space heating Heat pump DHW	58,096 (11% of 2022 pissions)	1,332 (16% of 2022 use)	N/A	\$6,871,000

Air sealing can reduce heat loss while mitigating moisture issues and improving occupant comfort. Multiple measures proposed in the timeline, in both near- and long-term bundles, have effects that will improve the air sealing performance of the building. The cumulative effects of these measures were modeled as a 20% overall reduction in envelope leakage. The savings are presented here as a long-term measure to fully account for the large improvement in sealing from the exterior insulation system (Measure 11, above). Proper arright integration of replacement windows and doors is a critical aspect of this measure, as was confirmed by unit blower door testing. As

windows are included as a near-term measure, they should be installed in such a way as to anticipate eventual continuity of the air and moisture control layer. The cost of this measure is included with the Measure II cost.

13. Domestic Hot Water Air-to-Water Heat Pump

Estimated Energy Savings: 710 MMBtu
Estimated Carbon Savings: 30,700kgCO2e (5.6% of 2022 Emissions)

Estimated Design Cost: \$75,000 Estimated Project Cost: \$1,800,000 Total Estimated Cost: \$1,875,000

Conversion from gas to electric hot water heating is delayed until future years as today's technologies are less than ideal for a building this size. More specifically, slower recovery rates require significantly more capital, For today's ballpark planning purposes, Mitsubishi's QAHV

system was selected as the basis for design as it uses CO₂ as the refrigerant which has minor global warming potential.

14. Hybrid Variable Refrigerant Flow (HVRF) System Estimated Energy Savings: 1760 MMBtu

Estimated Carbon Savings: 6300 kgCO2e (1.2% of 2022 Emissions)

Total Estimated Cost: \$3,772,000

In this report, full electrification is delayed until future years as the existing boliers are relatively new and today's technologies are less than ideal for buildings this size. For ballpark planning purposes, an HVRF system was selected as the basis of design. An HVRF is a heating and cooling system which consists of outdoor compressors connected to indoor cassettes in tenant units, offices, and common areas. Typical VRF systems run refrigerant piping throughout the entire building, but these

"hybrid" systems rely mostly on hydronic piping, a better choice for large multifamily.

An HVRF system would completely replace the existing hydronic heating system and the chiller. Demo costs for the existing boiler and chiller were not included in the project cost.

Stretch break! Discussion

Questions from first half?

Do No Harm

1. Financing <u>vs</u> project schedule

- 2. Avoid wasting client time and money
- 3. Utility bill impacts
- 4. Interactions between systems
- 5. Dewpoint movement

KOOY IATPOY II A A A I OTA = SU, MATTEN II A I OTA = SU, MATTE

HIPPOCRATIS COI MEDICI

vervstissimi, et omnivm alionvii prim cipis, libriomnes, ad uetuftos Codices fummo ftudio collati & reftautati.

B A S I L E AE

Do No Harm

- 1. Financing vs project schedule
- 2. Avoid wasting client time and money
- 3. Utility bill impacts
- 4. Interactions between systems
- 5. Dewpoint movement

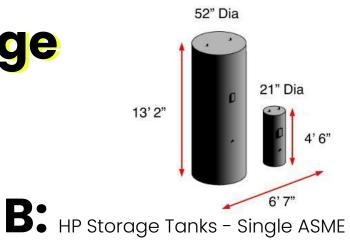
KNOY JATPOY HANAIOTAS

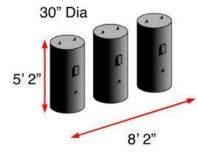
βλία απαντα.

HIPPOCRATIS COI MEDICI

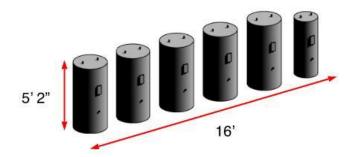
ververies imi, et omnivm altorym prim cipis, libri omnes, ad uetuftos Codices fumeso studio collati & restaurati.

B A S I L E AE


Investigate!


To avoid wasting time and money:

Confirm feasibility and constructability


- Electrical capacity
- Space for equipment
- Structural Integrity
- Building code triggers

Example: DHW Storage

Existing Condensing
Boiler Plant DHW Storage
tanks

C: HP Storage Tanks - Non-ASME

Investigate!

To avoid wasting time and money:

Confirm feasibility and constructability

- Electrical capacity
- Space for equipment
- Structural Integrity
- Building code triggers

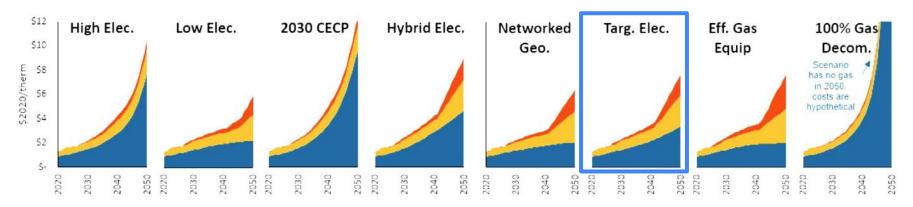
Do No Harm

- 1. Financing vs project schedule
- 2. Avoid wasting client time and money
- 3. Utility bill impacts
- 4. Interactions between systems
- 5. Dewpoint movement

KNOY JATPOY HANAIOTAS

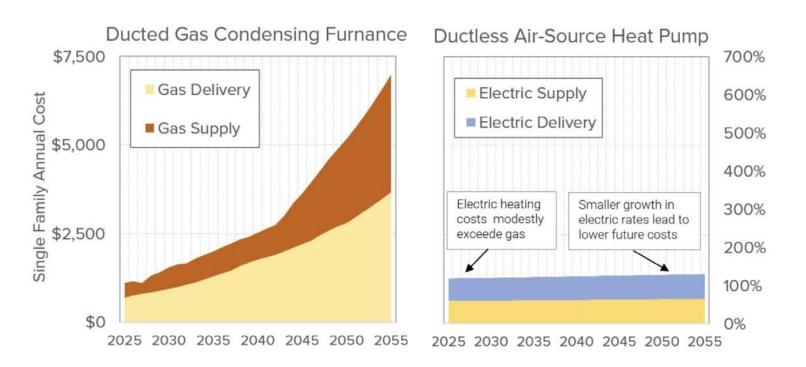
βλία απαντα.

HIPPOCRATIS COI MEDICI

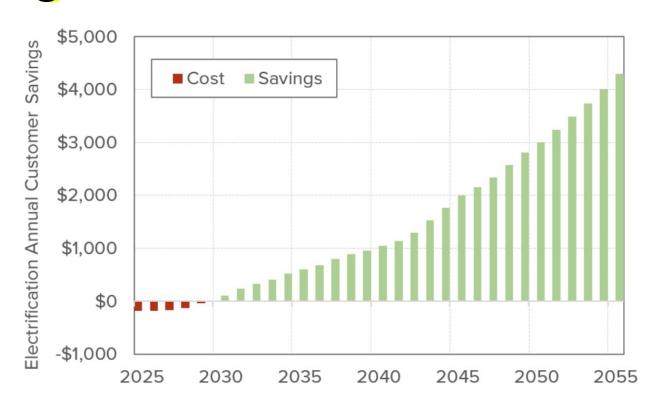

vetvetissimi, et omnivm altorym prim cipis, libriomnes, aduetuftos Codices fumino studio collati & restaurati.

B A S I L E AE

REPORT, MA MAGE: DECARBONIZATION PATHWAYS


Gas Price Futures

- COMMODITY COST (CONSERVATIVE)
- CONSERVATIVE (OPTIMISTIC)
- **DELIVERY RATE**


GROUNDWORK DATA AND ZERO CARBON MA MAGE:

Gas Prices vs Electric Prices

MAGE: GROUNDWORK DATA AND ZERO CARBON MA

Savings of Electric vs Gas

AGE: WORKS OF HIPPOCRATES, 1538

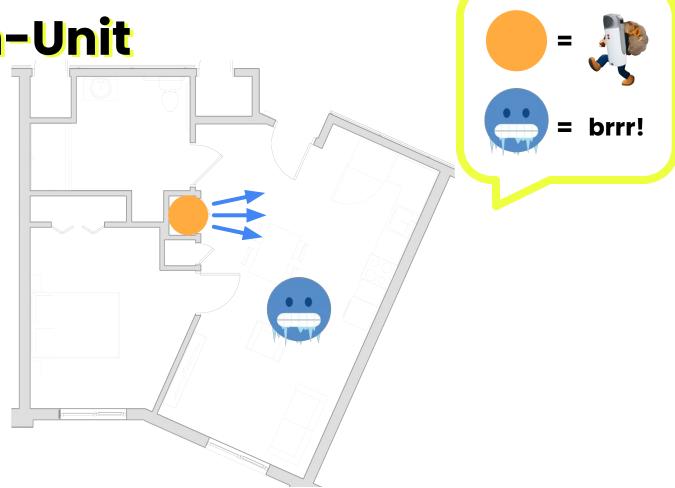
Do No Harm

- 1. Financing vs project schedule
- 2. Avoid wasting client time and money
- 3. Utility bill impacts
- 4. Interactions between systems
- 5. Dewpoint movement

KNOY JATPOY HANAIOTAS

βλία απαντα.

HIPPOCRATIS COI MEDICI


vervstissimi, et omnivm altorym prim cipis, libriomnes, ad uetuftos Codices fumino ftudio collati & reftautati.

B A S I L E AE

Do No Harm

- 1. Financing vs project schedule
- 2. Avoid wasting client time and money
- 3. Utility bill impacts
- 4. Interactions between systems
- 5. Dewpoint movement

KOOY JATPOY HAAAIOTAS

βλία απαντα.

HIPPOCRATIS COI MEDICI

vet vet issimi, et omnivm alionvii primi cipis, libriomnes, ad uetuftos Codices fumino ftudio collati & reftautati.

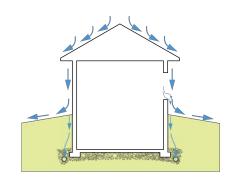
B A S I L E AE

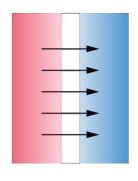
Newsworthy

theguardian

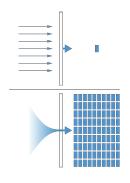
Mon 12 Aug 2024 04.00 EDT

'They encouraged us to insulate our home. Now it's unmortgageable'

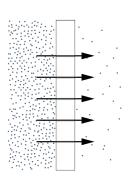

UK householders are angered by the discovery they cannot remortgage or sell their homes after installing spray-foam insulation to cut energy use


Jim Bunce and his wife Liz had their retirement hopes dashed after installing spray-foam insulation and couldn't get an equity release mortgage. Photograph: Richard Saker/The Observer

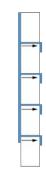
Jim Bunce thought he was doing the right thing for his purse and the planet: in 2022, as fuel costs soared, he and his wife decided to improve the energy efficiency of their house.


Moisture Transfer and Dewpoint

Drainage



Warm-to -Cold



Discontinuous

Air Barriers

Vapor Diffusion

Capillary Action

Moisture Transfer and Dewpoint

BRICK AND CMU ARE **NOT** AIR CONTROL

BRICK AND CMU ARE **NOT** VAPOR CONTROL

Takeaways

Use LESS

Electrify wisely and carefully/ strategically

BE PREPARED

Q&A

DER Resources for Owners - US DOE

Framework for Emissions Reduction Planning: Building Portfolios
Framework for Emissions Reduction Planning: Industrial Portfolios
Emissions Reduction Audit: A Checklist for Owners
Emissions Reduction Audit Scope of Work Template

For Practitioners - NREL

<u>Emissions Reduction Audit Scope of Work Template</u>
<u>Cold Climate Air Source Heat Pumps (ccASHPs) Technology</u>