

RESNET Standard 1550: Embodied Carbon Comes of Age

Chris Magwood, RMI

Curated by Aidan Mayer

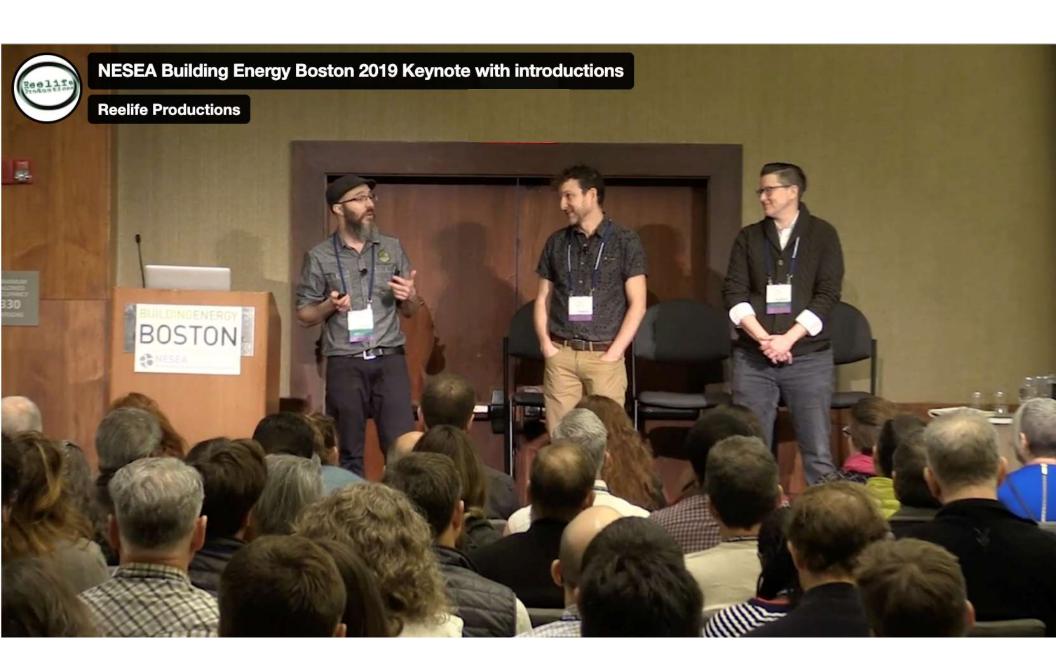
Northeast Sustainable Energy Association (NESEA) | March 20, 2025

BUILDINGENERGY BOSTON

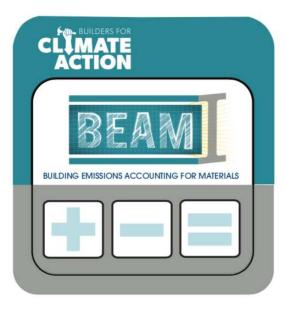
Learning Objectives:

- Explore the contents of the new RESNET Standard 1550
- Describe the life cycle phases and product categories that are included/excluded from standard, the rationale for these decisions and the limitations and advantages inherent these decisions
- Formulate a strategy for the potential inclusion of 1550 in your own decarbonization efforts and workflow
- Discuss any issues and concerns with 1550 and ways to get involved in the ongoing development of the standard and training/certification efforts that support it

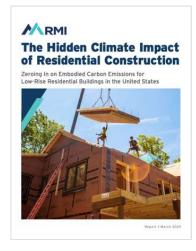

Northeast Sustainable Energy Association (NESEA) | March 20, 2025

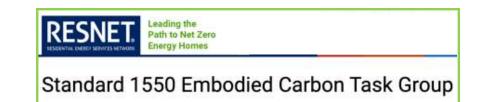

RESNET® Standard 1550: Embodied carbon comes of age

NESEA Building Energy Boston March 20, 2025

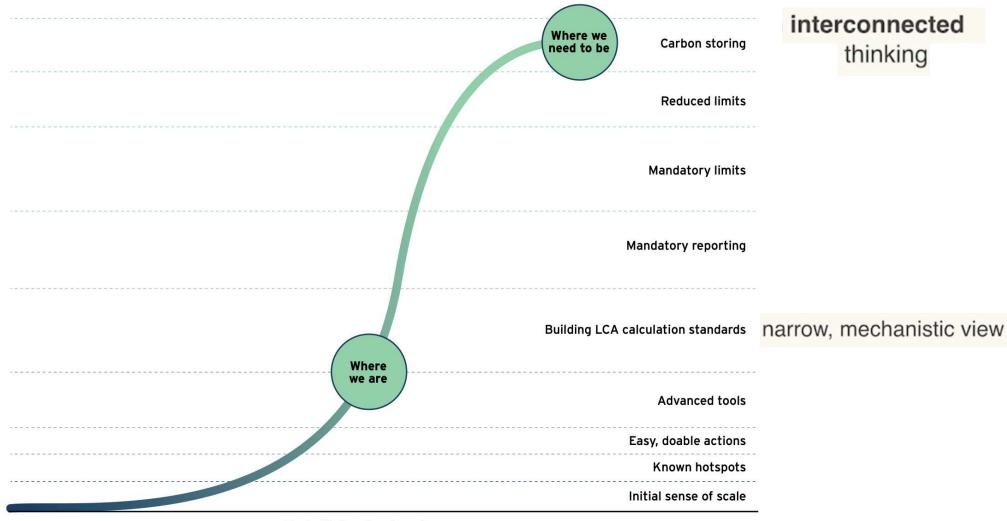

Draft PDS-01 Standard RESNET C1550

Standard for Calculating and Reporting the Embodied Carbon of Buildings with Dwelling and Sleeping Units


Thank you NESEA for:

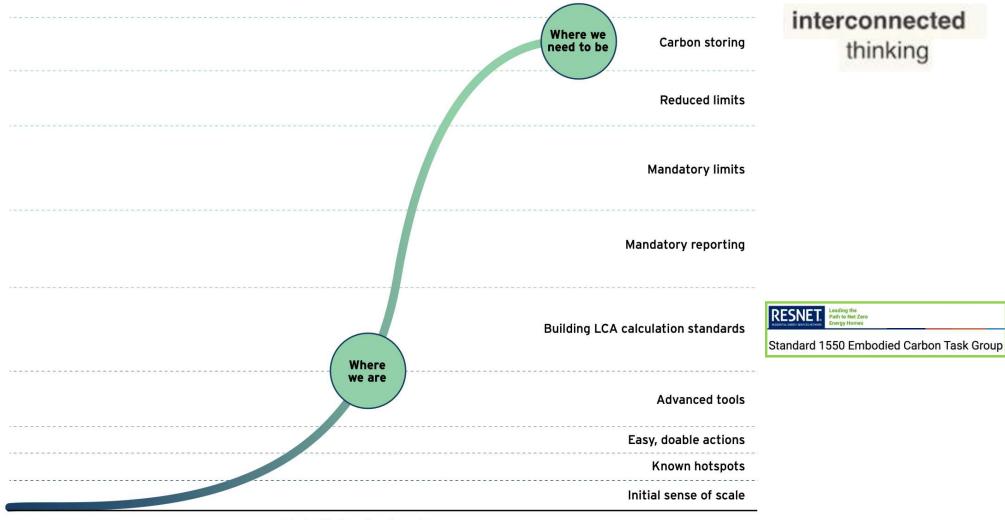


CLIMATE



Our simple message:

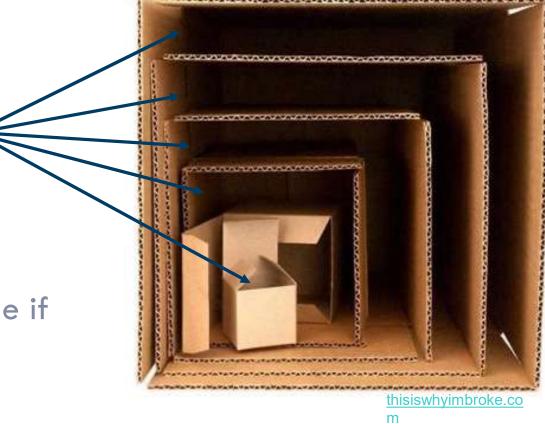
Making carbon-storing buildings is the most impactful action the building community can undertake to address climate change.


Our "life cycle" message:

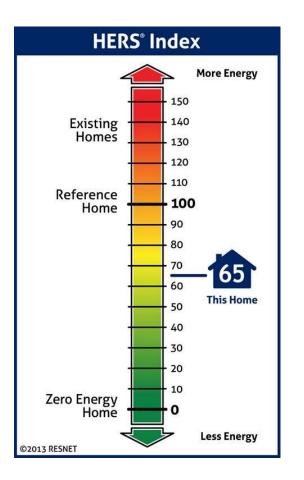
Truly addressing climate change requires us to **change our thinking**, and move beyond a narrow, mechanistic view of issues to an **interconnected style** of thinking.

We must accelerate our position on this curve to meet climate thresholds

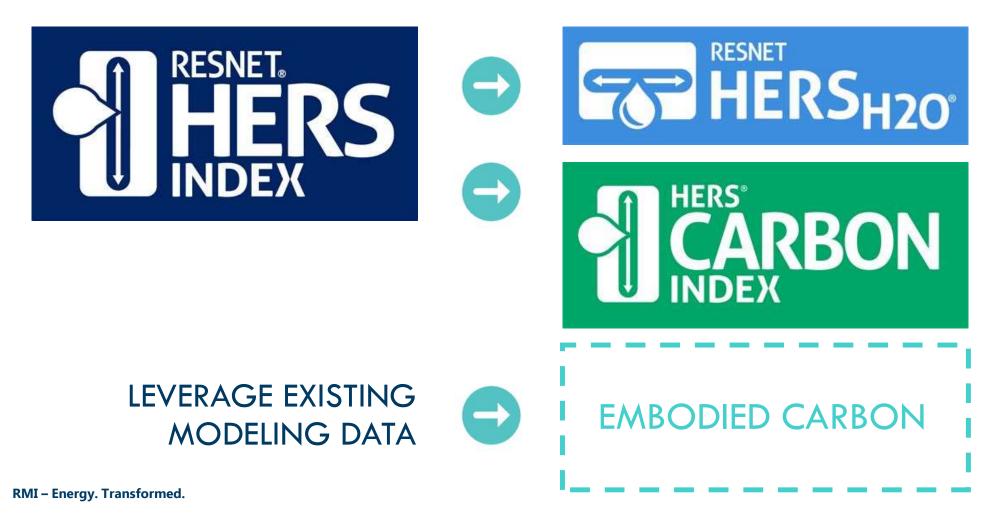
Embodied carbon learning curve

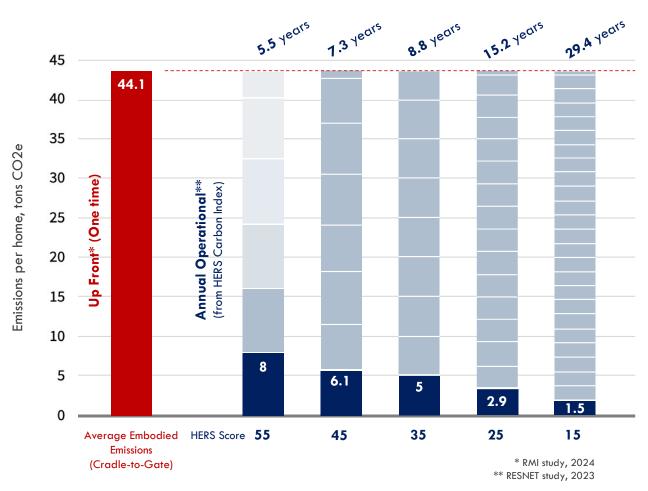

We must accelerate our position on this curve to meet climate thresholds

Embodied carbon learning curve


Why do we need a standard?

Life cycle stages Project boundary Building products


Results are only comparable if we're using the same box.



HERS raters can provide guidance for affordable decarbonization decisions

Up Front Embodied Carbon Emissions Compared to Annual Operational Emissions from HERS Carbon Index

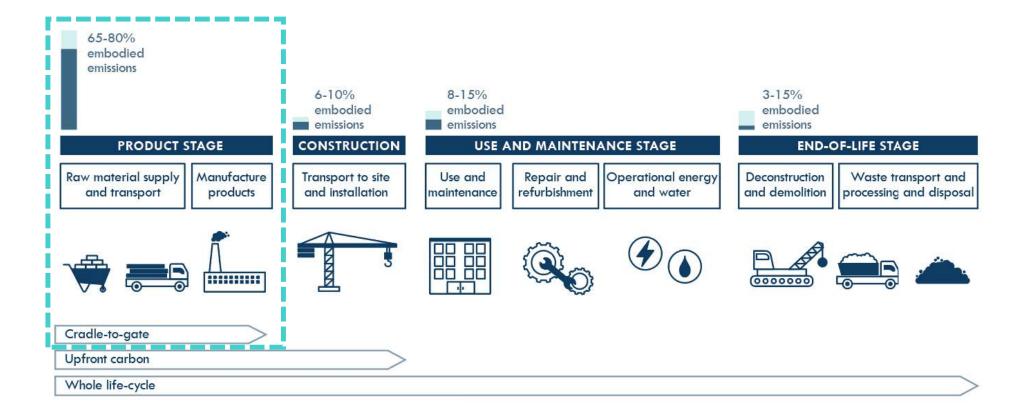
RESNET draft Standard 1550

Purpose & Scope:

1. Purpose

The provisions of this document establish a methodology for **quantifying and reporting embodied greenhouse gas emissions** associated with **building products** using data commonly gathered by energy raters and according to the system boundary and data sources defined in Section 5.

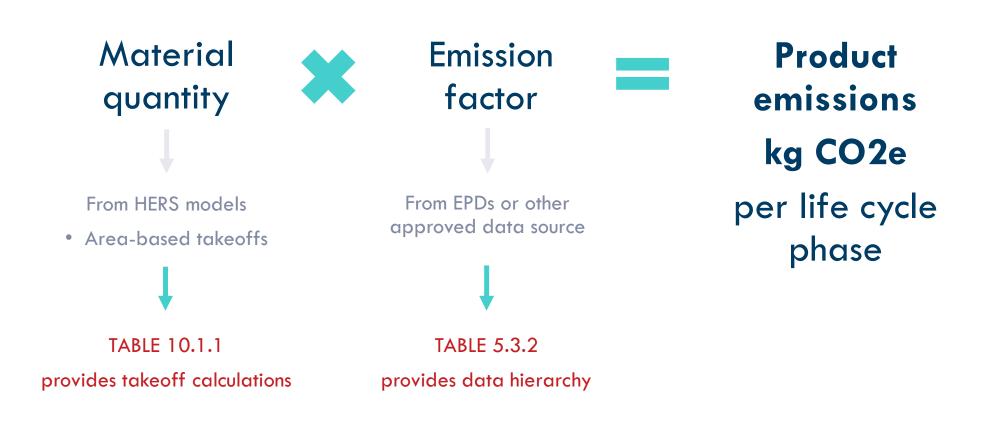
2. Scope


This standard is applicable to **buildings with Dwelling Units and Sleeping Units** in Residential or Commercial Buildings, excepting hotels and motels .

This standard does not set benchmarks or establish levels of building performance.

This standard shall not be used to circumvent any safety, health, or environmental requirements.

5 5


Life cycle stages A1-A3

Basic embodied carbon math

Basic embodied carbon math

Estimating material carbon emissions

Emission data sources

EPD — Product Im Declared Unit: 1 m ³ Construction Material	
Amount per Unit	
Global Warming Potential	450 kgCO ₂ e
Emitted	475 kgCO2e
Sequestered	-25 kgCO ₂ e
Ozone Depletion	0.00 kgCFC11e
Acidification Potential	3.01 kgSO2e
Eutrophication Potential	0.15 kgNe
Smog Formation	0.63 kgO3e
Primary Energy Demand	3020 MJ
Non-renewable	3045 MJ
Renewable	25 MJ

RMI – Energy. Transformed.

An **Environmental Product Declaration** (EPD) "quantifies environmental information on the life cycle of a product to enable comparisons between products fulfilling the same function."

The EPD methodology follows ISO series 14040 & 14025 requirements.

Reports in kg CO2e.

Building product categories

Taking a "drip-line in" approach

 Table 5.4.1 lists inclusions

Table 10.4.1 lists exclusions

- Site work
- Driveways/hardscape
- Balconies/porches/decks
- Formwork
- Appliances
- Cabinetry/millwork
- Gutters/soffit/fascia
- Fasteners/connectors
- Controls/valves
- Light fixtures

Two types of assessment

Following HERS modeling method

Projected Assessment

Projected Assessments are generated prior to construction wherein the actual installed conditions, equipment, and systems are not yet completed or installed.

Confirmed Assessment

Confirmed Assessments are conducted, generated, and verified after completion of construction.

Verification

Following HERS verification method

Verification (for Confirmed Assessments)

A **Certified Rater shall complete all the tasks** and gather all the required verification documents specified in Table 10.3.1.

If inspection of the assessed home and/or verification documents results in variations from the construction documents used for calculations, **all variations must be documented, and all required changes made to the dimensions and/or product selection** used for the embodied carbon assessment.

Verification

Following HERS verification method

Verification procedure

- Measure & verify dimensions
- Determine & record product brands
- Record with photos, receipts or other documents

Software

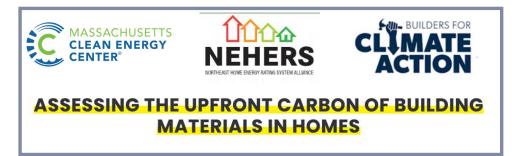
Following HERS software verification method

BUILDING EMISSIONS ACCOUNTING FOR MATERIALS

Software representatives

- Active participants in working groups
- Monitoring progress of standard
- Lag time expected between standard release and software availability

Software workflow



BUILDING EMISSIONS ACCOUNTING FOR MATERIALS

Software connectivity

 Prototype of connectivity between Ekotrope and BEAM for study in MA

https://www.masscec.com/resources/assessing-upfront-carbon-building-materials-homes

EMBODIED CARBON REDUCTION HIERARCHY

use less stuff use better versions of the same stuff use better stuff ve and build stuff in clear ca ctuff circu

mal

use less stuff.

REUSE

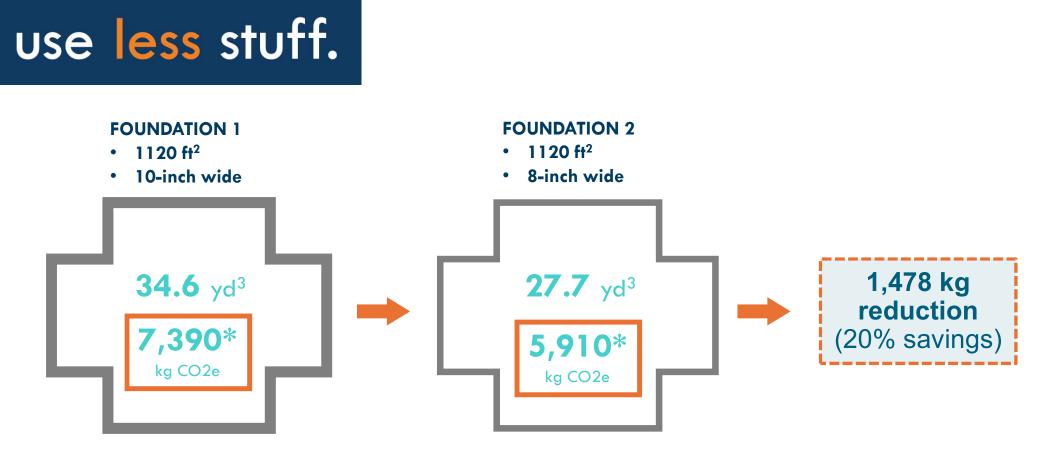
Reuse an entire building and/or components of a deconstructed building. Limit the scope of renovations to what is needed. Prioritize salvaged materials over new production.

RIGHT-SIZE

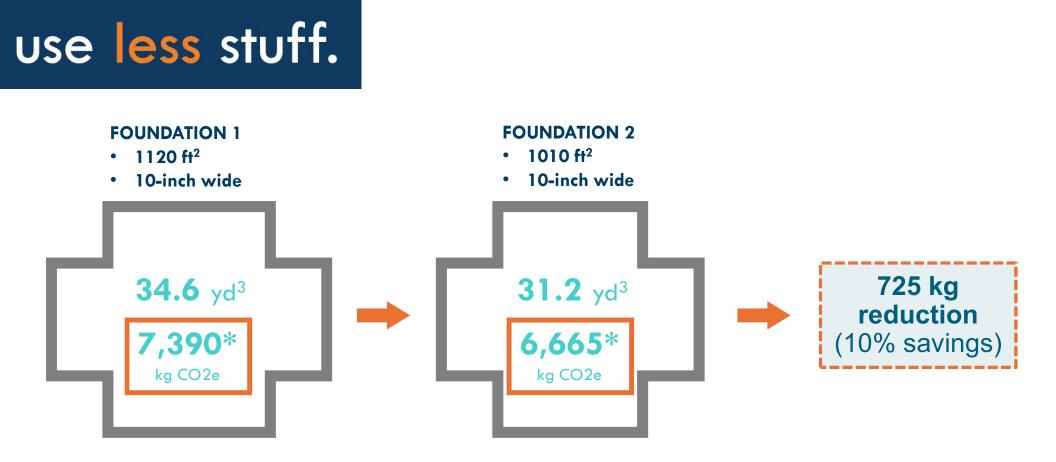
Optimize building size by using space more intensively and minimizing excess space. Design with better scheduling or dual-use spaces to decrease the building size.

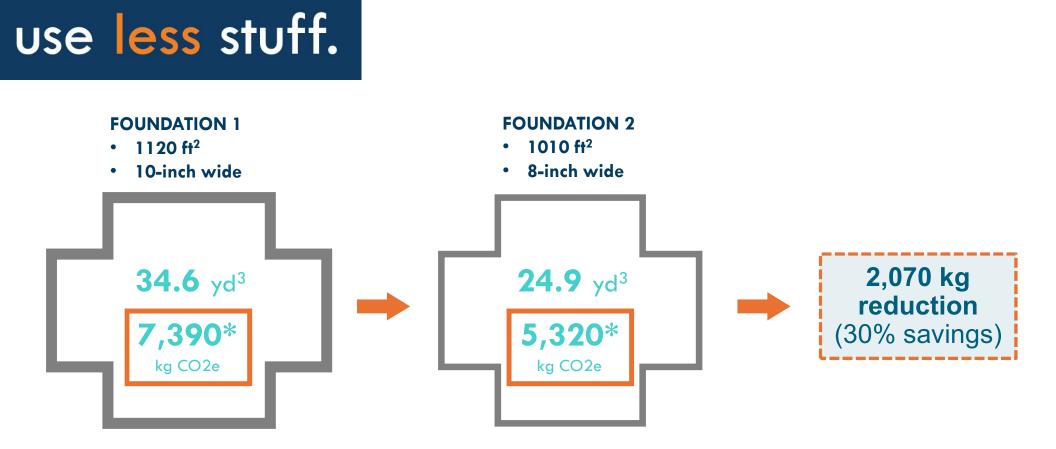
DEMATERIALIZE

Expose structure instead of applying finishes. Optimize structural system to minimize excess underutilized material. Consider reducing overdesign by evaluating conservative load assumptions.


RMI – Energy. Transformed.

000




RMI – Energy. Transformed.

*Results for NRMCA average mix as calculated in BEAM

RMI – Energy. Transformed.

*Results for NRMCA average mix as calculated in BEAM

RMI – Energy. Transformed.

*Results for NRMCA average mix as calculated in BEAM


use better versions of the same stuff.

PRODUCT/MATERIAL SUBSTITUTIONS

R

Make substitutions for highest impact materials informed by a whole-building integrated approach (Building LCA) or by low-material GWP limits when you cannot do an LCA.

use better versions of the same stuff.

RMI – Energy. Transformed.

*Results for NRMCA mixes as calculated in BEAM

use better versions of the same stuff.

RMI – Energy. Transformed.

*Results calculated in BEAM

use better stuff.

EXTERIOR CLADDING • 2,000 ft²

*Results calculated in BEAM

RMI – Energy. Transformed.

GWP average of 12 cladding types* **Brick**: 8,780 kg CO2e Acrylic stucco: 6,970 kg CO2e Natural stone: 3,975 kg CO2e Steel panel: 2,290 kg CO2e Veneer brick: 1,940 kg CO2e Stucco: 1,860 kg CO2e Vinyl: 875 kg CO2e 720 kg CO2e Fiber cement: Engineered wood: 600 kg CO2e Natural wood: 220 kg CO2e __

use your judgement.

MEP default values*:

- 1. Default is only option
- 2. Default can be replaced by product EPD
- 3. Defaults can be compared

*Results from beta BEAM-Ekotrope connection

🗆 Electrical			Subtotal :	1186 кg соз
Load Center and Meter	Number of dwelling unit :	1	unit	220
Electrical distribution wiring, receptacles, switches, boxes	CFA :	2926	ft2	966
Plumbing			Subtotal :	3230 Kg CO2
omestic Hot Water				
DHW tank heater, gas	each	0	unit	0
DHW tank heater, electric	each	0	unit	0
DHW tank heater, heat pump hybrid electric	each	0	unit	0
DHW tankless heater, gas	each	2	unit	520
chen / Bathroom Plumbing				
Kitchen sink, DWV primary stack, water sevice piping	per dewling unit :	1	unit	280
Bathroom DWV and potable distribution piping	Number of bathroom :	5	unit	700
Pipe insulation	Insulated piping if box checked :	\checkmark		1.6
Toilet	Number of toilets :	5	unit	650
Lav Sink	Number of Sinks :	7	unit	406
Bathtub	Number of Bathtubs :	2	unit	540
Shower	Number of showers :	3	unit	132
🗆 Mechanical			Subtotal :	8307 кg со2
eating and Cooling Equipment				
Natural Gas Furnace	Equip capacity :	0	kBtu capactiy	0
Ducted Heat Pump + Compressor	Equip capacity :	2.8	tons	2153
Mini-Split Heads + Compressor	Equip capacity :	4.5	tons	3240
Central A/C Compressor	Equip capacity :	0	tons	0
Electric Aux Heater	Equip capacity :	0	kBtu capactiy	0
Electric Baseboard	Equip capacity :	0	kBtu capactiy	0
Gas boiler	Equip capacity :	0	kBtu capactiy	0
Air-to-water heat pump	Equip capacity :	0	tons	0
Ground source heat pump equipment	Equip capacity :	0	tons	0
Ground source heat pump ground loop borehole	Li. feet of borehole :	0	linear foot	0

MARMI HomebuildersCAN

Case Study: Zero House

Embodied Carbon

Cradle-to-gate, kg CO2e/m²

*Average based on report from 2022.

Carbon Storage

Straw insulation (half of first floor walls)

Recycled juice-box structural sheathing

Cellulose insulation (roof, walls & floors)

Wood fiberboard continuous insulation

tons of CO2 stored

"

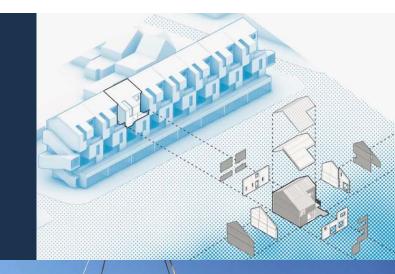
Simple, low-cost offsite panelization makes it easier to create carbon-storing, healthy and efficient housing.

Chris Magwood, Former Executive Director, Endeavour Centre

Operational Carbon | Zero House was designed to exceed Canada's Tier 5, net zero ready codes. The fully electric building is very airtight (1.0 ACH/50), highly insulated and incorporates passive solar strategies. 3.5 kW of roof-integrated solar covers ~70% of annual electrical loads.

Airtight building (1.0 ACH50)

Roof-integrated solar panels



Lessons Learned

1. Design for disassembly works! The building was built and dismantled three times with all materials reused and no waste.


2. Offsite panelization can be straightforward and doesn't require a "factory".

3. It is possible to combine efficiency, carbon storage and occupant health.

MARMI HomebuildersCAN

Case Study: Solstice Northeast

*Average based on report from 2022.

Carbon Storage

Dense pack cellulose insulation

Engineered wood siding

Certified FSC lumber

tons of CO2 stored

"

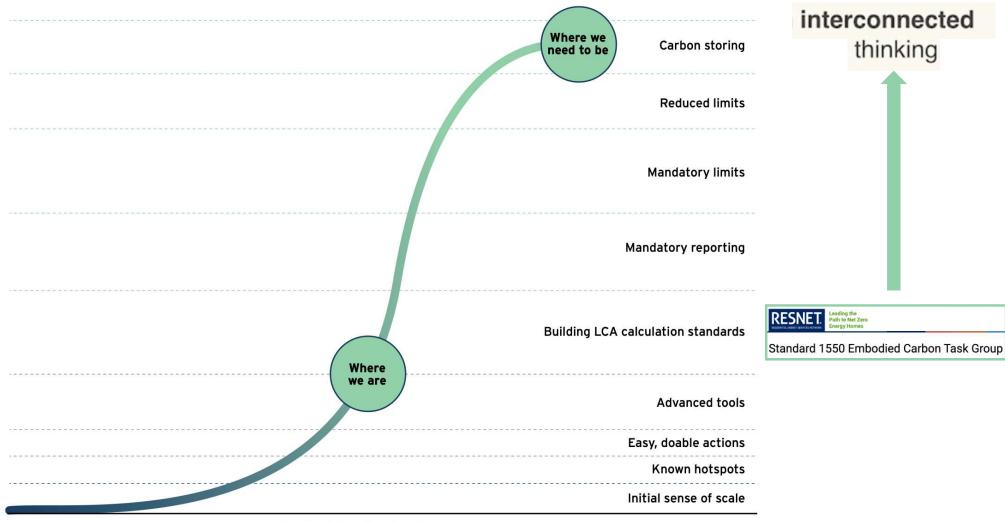
Solstice Northeast is Minnesota's first low embodied carbon, passive house (Phius) certified apartment building. Achieving passive house performance with a ~60% reduction in embodied carbon emissions was no small feat, but it also wasn't expensive! Fully 1/3rd of that EC reduction was cost neutral.

Cody Fischer, President, Footprint Development

Operational Carbon | The Solstice Northeast apartment building was designed as fully electrified, and certified to Phius Core which considerably reduced operating energy consumption. The building was designed with no mechanical equipment located on roof. To maximize space for a rooftop solar array, a special roof anchor system was designed in coordination with the location of roof ventilation points.

Phius Core certification

Lessons Learned


1. Major embodied carbon reductions can be achieved for no or low cost.

2. Market rate passive house and low embodied carbon apartment buildings can be achieved without subsidy, using readily available materials and familiar trade techniques.

3. For "missing middle" scale housing, reducing the embodied carbon of the structural system had the highest impact.

Baseline	Solstice Northeast	Carbon Reduction
Fiberglass batt insulation	Dense pack cellulose insulation	-20.6 tC02e
Fiber cement siding and full-depth brick	Engineered wood siding and thin brick	-14.4 tCO2e
Standard carpet and LVP	Interface™ carpet and LVP	-9.2 tC02e
Standard gypsum wall board	USG EcoSmart™ Panels	-9.1 tCO2e

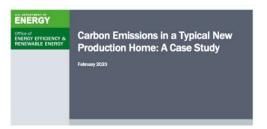
We must accelerate our position on this curve to meet climate thresholds

Embodied carbon learning curve

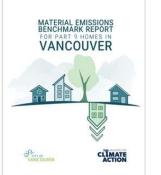
Resources

RMI The Hidden Climate Impact of Residential Construction

Zeroing In on Embodied Carbon Emissions for Low-Rise Residential Buildings in the United States


Report / March 2023

https://rmi.org/insight/hidden-climateimpact-of-residential-construction/



https://www.buildersforclimateaction.org/our-work.html

https://www.nrel.gov/docs/fy23osti /84227.pdf

Benchmarking Report

Establishing the Average Upfront Material Carbon Emissions in New Low-Rise Residential Home Construction in the City of Nelson & the City of Castlegar

Prepared for Meeri Durand, Manager of Planning, Development & Sustainability, City of Castlegar

> Prepared by Chris Magewool, Director, Builders for Climate Action Erik Bowden, Embodied Carbon Analyst, Buiders for Climate Action ber Treadenwy, Research Assistate, Buiders for Climate Action Jawaia Ahmada, Sostainability Analyst, Builders for Climate Action Statelle Deluce, Tegistered Energy Advisor, IWent Builing Energy Consultants Natalin Deuglas, Embodied Carbon Fold Coordinance, Clin of Netion

20% off NESEA Discount Offer valid till March 31st

Use Code: NESEABEAM2025