

BuildingEnergy NYC Wednesday Webinars

Optimizing Ventilation for Decarbonization 11.13.24

- Review agenda & introductions
- Policy context and incentives
- Optimizing ventilation through duct sealing
- Case study
- Q & A

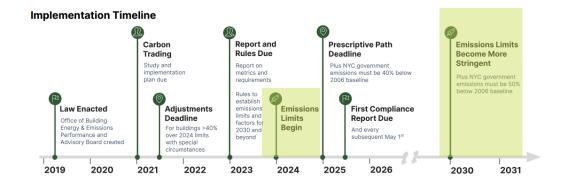
Today's Speakers

Maggie McCarey

- Vice President, Policy & Business Development
- 15 years of energy efficiency and building decarbonization policy
- Former MA DOER Energy Efficiency Director

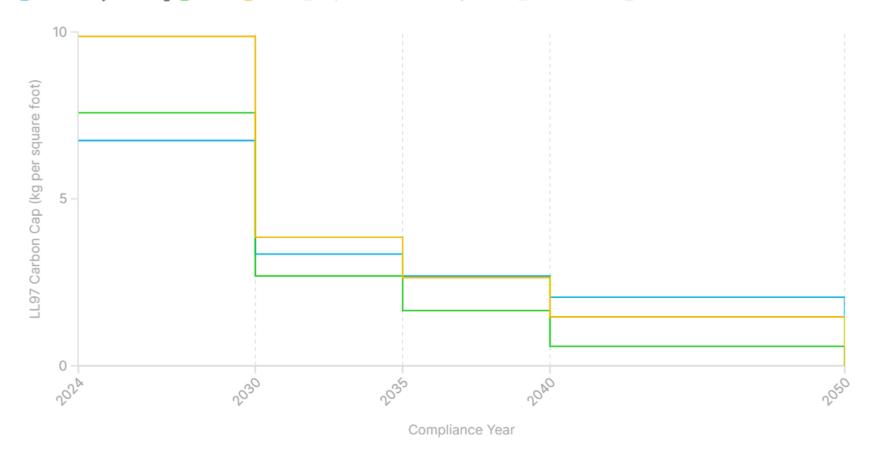
Tom Holmes

- Northeast Commercial Business Manager
- 20+ Years Designing & Implementing Building Performance Projects
- Specialist in Existing Building Envelope & Ventilation



Policy Context

Local Law 97


- Requires buildings over 25,000 square feet to meet new greenhouse gas limits that decline over time
- Starting in 2025, an emissions report must be submitted by May 1 every year for the previous year 2024 is the first reporting year
- 2024-2029 limits impact the top 20% of emitters and 2030 impact the top 75%
- Penalties for being over the CO₂ emission limit start at \$268 per year per metric ton

CO₂ Limits Over Time

Multifamily Housing Office Hotel Supermarket/Grocery Store Data Center Financial Office

Carbon caps become more stringent over a series of compliance periods: 2024-29, 2030-34, 2035-39, 2040-49, and 2050 onwards.

Unsure of your building's carbon emissions? https://www.be-exchange.org/calculator/

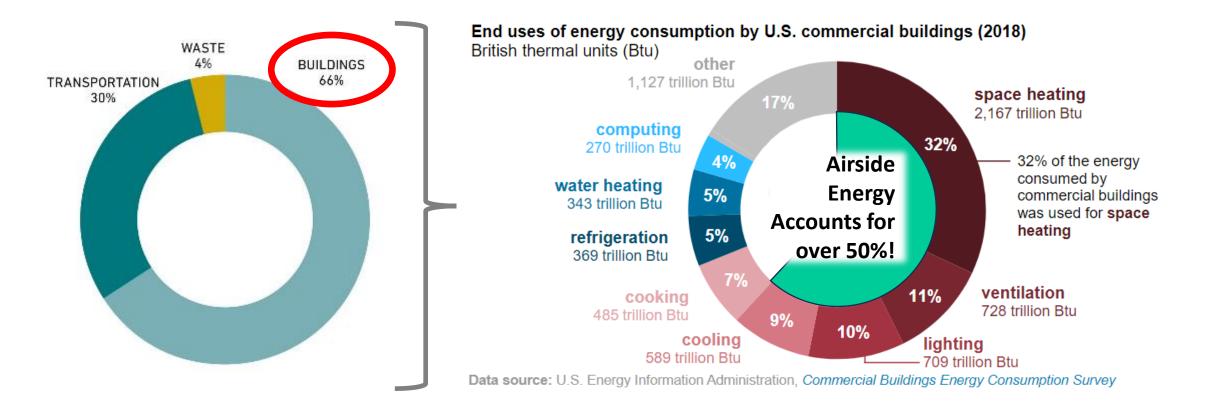
Incentives to Support Implementation and **Compliance**

The Consolidated Edison Multifamily Energy
Efficiency Program Manual
September 23, 2024

Custom Measure: Ventilation Overhaul	 Co- or Pre-requisite measures: Rooftop exhaust fans to be replaced No existing Constant airflow regulators (CARs) installed within the registers Existing motor efficiency for exhaust fans must be based off motor nameplate For motors with no nameplate efficiency, 	 Facility operation hours, facility type, and description of existing load profile must be provided. Proposed quantity to be replaced Description of what each fan serves Applicable fan timer schedules for baseline and proposed conditions. CFM measures and aerosol reports for the 	 Proposed motor must be higher than applicable minimum motor efficiency as stated in the latest ECCCNYS Kitchens and bathrooms shall be continuously ventilated to a minimum of 25 CFM as stated in the latest version of the NYC Mechanical code Note: Savings associated with shafts being cleaned and sealed should not be included
---	--	--	--

Fuel Type	Incentives*
Electricity Savings	\$0.35/kWh
Natural Gas Savings	\$3.00/therm
District Steam Savings	\$120/Mlbs
Oil savings	\$80/Mlbs

*Con Edison eligibility and project review and approval required for all projects; other requirements and max % incentives of total project cost apply https://www.coned.com/-/media/files/coned/documents/save-energy-money/rebates-incentives-tax-credits/rebates-incentives-for-multifamily-customers/multifamily-program-manual.pdf Low – 0% interest financing may also be available: <u>https://www.coned.com/en/save-money/rebates-incentives-tax-credits/financing-as-low-as-zero-percent</u>

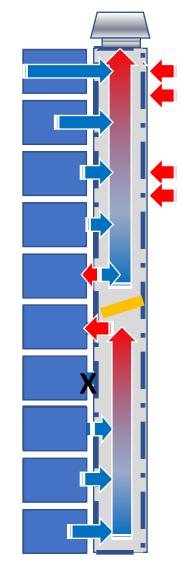


Optimizing Ventilation

Energy Consumption in NYC

Buildings account for 2/3 greenhouse gas emissions

How a Ventilation System Should Perform

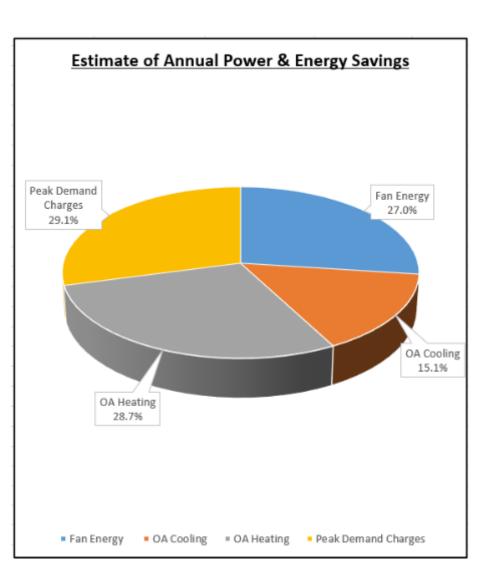


- Roof fan draws air from the riser
- Exhausting air flows up the risers to the fan
- Vents in the apartments pull air to the risers
- Fresh air replaces stale air

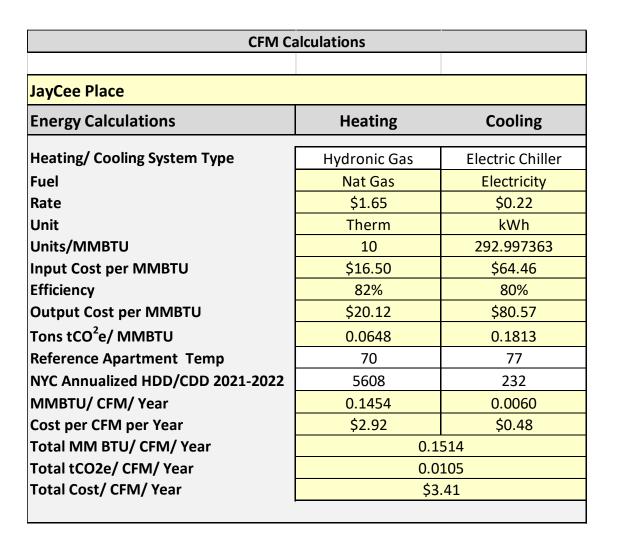
How Your Ventilation System *Does* Perform

- ★ Fans over-exhaust because leaky ducts limit optimizing them
- * The risers have gaps and holes that compete with the vents
- * Air flows at the vents vary wildly, sometimes flowing *into* the apartments or changing direction with the wind
- Shaft blockages or accumulated leaks prevent lower floors from removing any air at all or send it into apartments above
- Occupants block up their vents or neglect them to the point where no flow can get through.
- Common area heating & cooling systems can't keep pace with overventilation

Achieve Energy & GHG Reductions



- Reduce building energy use by tens of thousands of \$\$ per year
- Significantly cut building GHG emissions
- Proven solution that qualifies for Con Ed, local & NYS energy & GHG reduction incentives
- Avoid today's LL97 fines & start preparing for 2030 reduction targets


Four-Way + Energy Savings

- Fan Energy Reduce fan speeds without reducing delivered fan *performance*
- Peak Demand Can equal *or exceed* run-time kWh reductions
- OA Heating Less wasted supply air means less OA to heat up in the first place
- OA Cooling Reduce the load on chillers
- These are *direct savings* from sealing *interactive savings at chiller motors, improved building pressurization, etc. are a bonus!*

Cost of a CFM: Cut in half with Aeroseal

- "Old Code" apartments exhaust 150 CFM or more
 - 100 CFM from kitchens
 - 50 CFM from bathrooms)
- 150 CFM X 200 apartments = 30,000 CFM
 - \$102,000/ year
 - 4,500 MMBTU/ year
 - 315 tCO²e/ year

Optimizing the Air Side

Building Details (Adjust these values in the "References" Tab)					E	xisting	Proposed	Difference
Building Total Square Footage	496,2	40		AHU System Fan HP		13.00	13.00	0.00
				Exhaust System Fan HP		22.75	17.38	5.38
Day Indoor Temp (Heating)	70	deg F	(H&C Settings)					
Night Indoor Temp	67	deg F	(H&C Settings)	Total AHU Zone Flow		11,700	12,600	-900
Day Indoor Temp (Cooling)	76	deg F	(H&C Settings)	Total Exhaust CFM		83,400	41,190	42,210
Night Indoor Temp	78	deg F	(H&C Settings)					
Daytime Hours per Day	16	(64M-10PM)	MRC Settingel	Electric Line (kM/b)				

Annual GHG Used by Ventilation (kg)	Existing	Proposed	Difference
Electricity (kWh)	199,674	138,492	61,182
District Steam (MMBTU) Heating	357,123	223,896	133,227
Total GHG Used by Ventilation	556,797	362,388	194,409
GHG Use: Kilograms per Building SqFt	1.1220	0.7303	0.3918
2025 Percent of LL97 GHG Carbon Cap	16.6%	10.8%	5.8%
		Total Annu	al Savings: \$123,906
Estimated Con Edison Utility Incentive (Market Rate Multifamily) Electric Incentive per kWh: \$0.35	Annual GHG Used by Electricity (kW District Steam		Proposed Difference 138,492 61,182 223,896 133,227

Estimated Con Edisc	on Utility Incentive (Market Rate M	ultifamily)		Annual GHG Used by Ventilation (kg)	Existing	Proposed	Difference
				Electricity (kWh)	199,674	138,492	61,182
Electric Incentive per kWh:	\$0.35		_	District Steam (MMBTU) Heating	357,123	223,896	133,227
Incentive Value (Electric) - Fan Saving	s	\$9,914.21		Total GHG Used by Ventilation	556,797	362,388	194,409
Incentive Value (Electric) - Heating Sa	wings	\$0.00					
Incentive Value (Electric) - Cooling Sa	vings	\$23,452.00		GHG Use: Kilograms per Building SqFt	1.1220	0.7303	0.3918
Total Incentive Value (Electric)	-		\$33,366.21	2025 Percent of LL97 GHG Carbon Cap	16.6%	10.8%	5.8%
Gas incentive per Therm:	\$3.00	Not Eligible	\$0.00	Total Project Price:	\$921,520.00		
District Steam Incentive per 1000LBS:	\$70.00	Eligible	\$208,528.60	Less Utility Incentives:		\$241,894.81	
				Net Project Price:			\$679,625.19
Incentive Cap: \$1,000,000 or	70%		\$645,064.00	Less First Year Energy Savings:		\$123,905.64	
				Net Cost after Incentives & 1st Year Savings			\$555,719.56
Total Est. Utility Incentive (Electric & Gas):	26%	Incentive:	\$241,894.81				
				Simple Pay Back Perio	od in Years (befor	e incentives):	7.44
Note: Incentives are estimated and a	re subject to acceptance and appro	val by Consolid	ated Edison	Simple Pay Back Period in Yes	ars (with propose	d incentives):	5.49

Improve Building Performance

- Reduce lobby & elevator depressurization problems
- Improve poor apartment ventilation
- Better control odor transfer
- Resolve IAQ complaints (and fines)
- Strong First Step integrates well with longer-term electrification objectives

	٦

How We Make Them Work

Optimize Apartment Air Flows:

- Standardized, Consistent Flows
- Reduced Heating & Cooling Loads
- Self-Balancing to All Vents and to All Floors
- Promotes Healthy IAQ

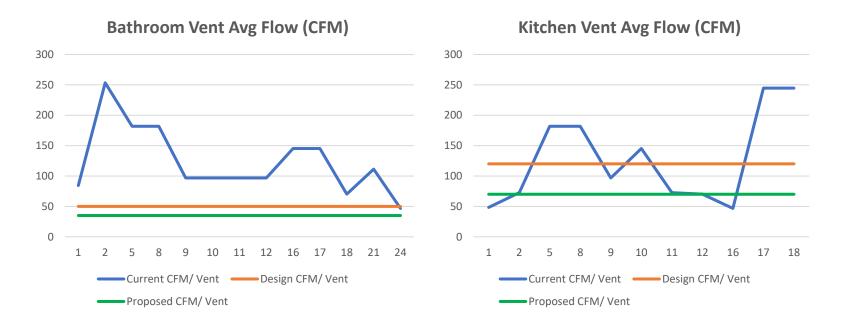
Reduce Exhaust Riser Leakage

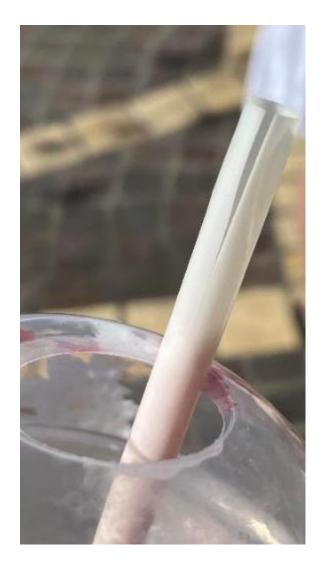
- Focuses 97% of Exhaust Flow to the Vents
- Allows Reduced Fan Flows Without Compromising Vent Performance

Replace/ Revise the Fans:

- Reduce Gross Flows 30% 60%
- Reduce Fan Power 20% 50%
- Reduce Kw Demand Load
- Improved Fan Longevity

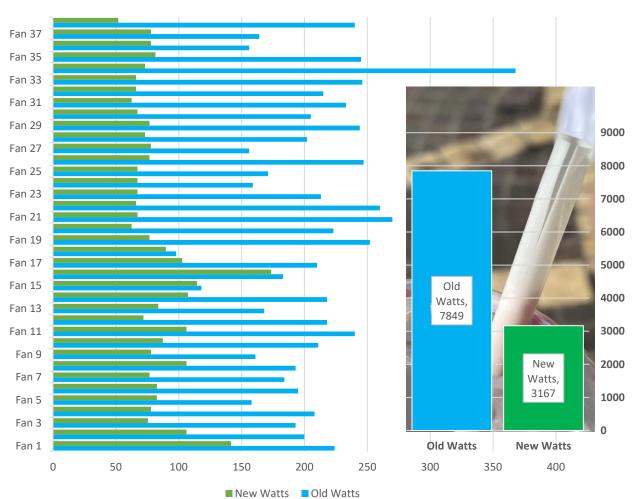
Start with the Fans





Fan Energy Savings: Speed Controls (2024)

Changing the Fans, Alone, is Not Enough:


- 42 Fans Upgraded to VFDs
- Huge Variability from Vent to Vent, Apt to Apt
- Half the Fans Still Run at Full Speed (reduced savings)

Fan Energy Savings

Fan Replacement Wattage Reduction

Optimizing the Fans:

- 38 New Fans Replace Aging, Poorly Performing Fans
- 60% Reduction in Fan Power
- 40,000 Annual kWh Savings
- \$9,000 Annual Electric Savings
- 4 kW Shed from Demand Load
- Each Fan Individually Tuned to Match Performance Needed

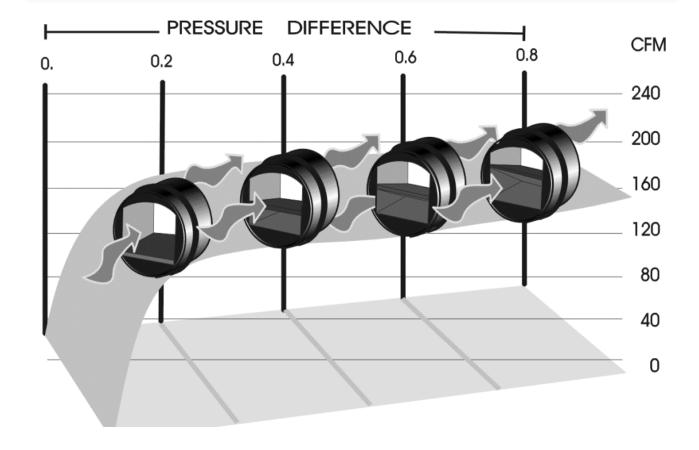
Optimize the Vents

Self-Balancing Flow Dampers (CARs)

- Use the pressure difference between duct and apartment
- Automatically maintain a constant, pre-set vent airflow in every vent, automatically adjusting to changing conditions

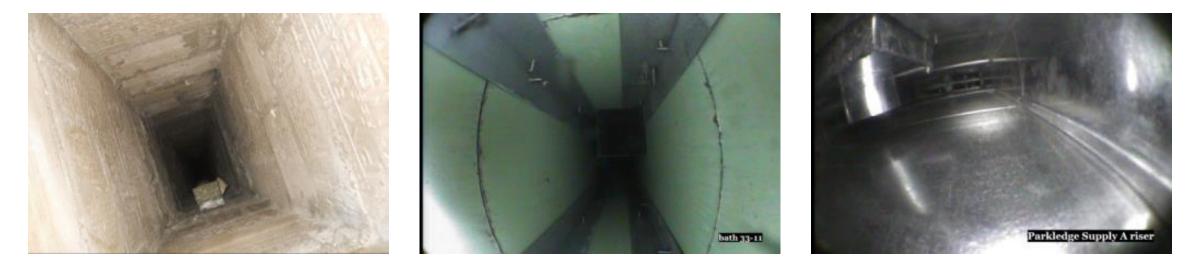
But...

 Smaller opening "competes" more with system leakage – *requires tighter ducts (3% or less for reliable performance)*



Self-Balancing Flow Dampers

Seal the Risers



The Risers

- Risers generally come in three varieties
 - Masonry (tile) risers (1950s to 1980s)
 - Drywall risers (1970s Now)
 - Sheet metal risers ("Wedding Cake Bldgs")
- Many systems are "hybrid", using masonry or drywall for risers and sheet metal at offsets

Remote Mastic Application

- Seals Gaps of Up To 1"
- Good application for gross sealing of simple systems
- Can reliably reduce leakage to 15% -20% of total design flow (not always tight enough for CAR dampers)
- You can only SEAL what you can SEE: snorkels, turns & other obstructions can't be reached remotely

Proven & widely adopted Sealant

- Seals holes up to 5/8"
- Sealant remains rubbery
- Vinyl polymer is safe
- No lingering odors or off-gassing
- Lasts 20+ years (3yr warranty)
- Over 300,000 homes and 10,000 commercial buildings

Non-invasive Innovative Aeroseal Process

Verification, Instant Commissioning

C

COMMERCIAL LEAKAGE REPORT

Duct sealing performed at:

Clemson 5637 peachtree cir east Ridgefield, Ct 06877

Seal Date: MM/DD/YYYY Building Type: Library System Description: ERV-1 Seal Description: 2nd Floor Exhaust

Seal Specifics

Aeroseal Gen 2.1 Case ID: XXXX

Duct surface area calculator

Rectangular						
Sect. No.	W X (in.)	(H (in.)	Len. (ft)	Surface Area (ft²)		
1	16	8	2.6	83.2		
2	6	6	5.9	94.4		
3	10	8	0.8	19.2		
4	8	8	2.3	49.1		
5	8	6	8.6	161		
6	10	8	3.2	76.8		
		Total	483			

Round						
Sect. No.	Diam. (in.)	Len. (ft)	Surface Area (ft²)			
1	4	18.8	157			
2	5	11.4	119			
3	6	7	88			
4						
5						
6						
		Total	365			

Note: Duct leakage results reported by Aeroseal conform to the calculations laid out in method D of ASTM E 1154: Standard Test Methods for determining air leakage of air distribution systems by fan pressultation.

Aeroseal | aeroseal.com | 877-FIX-DUCT | info@aeroseal.com

How We Make Them Work

Optimize Apartment Air Flows:

- Standardized, Consistent Flows
- Reduced Heating & Cooling Loads
- Self-Balancing to All Vents and to All Floors
- Promotes Healthy IAQ

Reduce Exhaust Riser Leakage

- Focuses 97% of Exhaust Flow to the Vents
- Allows Reduced Fan Flows Without Compromising Vent Performance

Replace/ Revise the Fans:

- Reduce Gross Flows 30% 60%
- Reduce Fan Power 20% 50%
- Reduce Kw Demand Load
- Improved Fan Longevity

Commission the Integrated Solution

Commission the Fans:

- Tune Each Fan for Target Airflows
- Measure Fan Power and Static Pressure

Verify Every Riser

- Seal the Risers
- Seal the Fan Curbs
- 3% Solution

Commission the Vents:

 Measure Top, Middle & Bottom Floors

Case Study: Jaycee Place

Multifamily Ventilation Overhaul Case Study:

- 138 Income Qualified Apartments
- Project Cost: \$370,000
- Annual Energy Reductions: Electric: 83,000 kWh
 Natural Gas: 24,500 therms
- Utility Incentive \$102,000 27%
- Annual Cost Savings: \$58,600

- Simple ROI: 4.6 years VS 20-year measure
- Full M&V with Results within 2% of predicted targets!

Q&A/Next Steps

Q & A/Discussion

Thank You!

Maggie McCarey

Aeroseal

Vice President, Policy & Business Development maggie.mccarey@aeroseal.com

Tom Holmes

Aeroseal Northeast Commercial Business Manager thomas.holmes@aeroseal.com

